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Symmetric heaping in grains: A phenomenological model
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Heap formation of granular materials in a vertical vibrating bed is studied by a simple model using the
profile of the heap as the dynamic variable. Vibration increases the local height, but is counterbalanced by the
nonlinear coupling, which tends to suppress the growth of the height. The steady state heap can be solved in
closed form in terms of Jacobian elliptic functions. Phenomena such as heap formation and downward and
upward heaps can be reproduced. Our results agree with the experimentally observed change of downward to
upward steady heaps as the vibration strength is increased. Predictions from the model compare favorably with
experimental results on heap profiles and heaping angles.

PACS numbgs): 83.70.Fn, 47.54:r, 83.10.Hh, 45.05tx

[. INTRODUCTION upward mode, and vice versa. It is observed thal as-
creases, the downward mode is formed first and followed by
Granular materials has been the subject of great scientifithe upward mode. So far there is no theoretical explanation
and engineering interest for many ye#ét$. These granular for the upward heap, nor a fundamental understanding of the
materials have the unique mechanical properties that thegole played by boundarigsvalls) in this case.
cannot be easily classified as either solid or liquid since they Friction between the grains and with the wall, driving
can sustain shear like a solid as well as flowing like a liguidmechanism, and boundary effe¢&13] all play important
when driven. However, as distinct from liquids, granularroles in the heap formation. There are many investigations
heaps(sandpiley are stable as long as the top surface is at &oth in theory[2,14—16 and experimenf10,12,17 as well
slope less than the angle of repose. When the slope is iras numerical simulatiofl8,19 to investigate the underlying
creased slightly above the maximum angle of stability, grainsnechanism of heap formation in a vertically vibrating granu-
begin to flow and an avalanche of particles occurs. Becauder layer. One of the main issues is to understand the nature
of this unique characteristic, granular materials exhibit manyf the instability at the threshold of heap formation where the
unusual behavior in a vertical vibrating bed such as size segsbration strength is still relatively low, and to relate the
regation[2—4], density waveg5], convective transpofftt], = observed phenomena to some vital dynamic granular proper-
and spectacular pattern formatidrs8. ties yet to be identified. One plausible candidate is the den-
One of the most remarkable phenomena in granular masity fluctuations induced by vibration in the presence of in-
terials is the heap formation of grains in a vertically shakenterstitial gases. It is found that interstitial gas is vital for the
container[9-11]. The relevant dimensionless parameter forneap formation. Palet al. established in their experiments
this problem is the reduced acceleration amplitube [17] that heaping and convection current are strongly sup-
=Aw?/g of the bed, wherg, A, andw are the gravitational pressed when there is no interstitial gas. Therefore, density
acceleration, amplitude, and angular frequency of the vibratfluctuations induced by vibration seem to be essential for
ing bed, respectively. An originally flat layer of sand will heap formation, and any successful heaping model should
become unstable and turn into a heap with a well-definedlso include this effect. Since the overall decrease in the
structure ifl" is greater than some threshold valtie. Heap  density and density fluctuations of grains under vertical vi-
formation is most spectacular when the number of grains i®rations can be viewed as the creation of voids in the granu-
relatively small. In such a case, an asysmetric heap will béar materials, there have been some models to include void
formed with most of the grains gathered in only one part ofdynamics[14,16], but they do not necessarily lead to the
the container breaking the symmetry of the original systemformation of heaps. Furthermore, these models of voids are
The grains in the heap are not simply moving up and dowrguite complicated cellular automata models, and there is no
vertically, but a convection roll with grains moving up along analytical result at all. On the other hand, the sidewalls are
the wall and flows down the slope of the heap is also proalso essential, since they confine the grains to flow in a finite
duced. On the other hand, when the number of grains is largesgion and the frictional properties of the wall can affect the
enough, it has been shown experimentdlh?] that two  convection mode.
types of symmetric heaps can be formed, namely, the upward In this paper, we take another theoretical approach in de-
(valley) and downwardmountain modes. The main differ- veloping a phenomenological model for the formation of
ence between these two modes is that the convection currehtaps based on the ideas of void models. The key point is the
of the granular particles next to the wall move up in theobservation that the presence of void in a granular medium
would modify and/or increase the effective height of the
heaping profile. By using the height profile as the only dy-
* Author to whom correspondence should be addressed. Electronitamical variable, and taking into account the decrease in
address: pylai@spl1.phy.ncu.edu.tw local density due to vibration and the nonlinear couplings for
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(@) () © hs(—X)=hy(x). @)

A The other boundary condition for this problem is based on

H the observation that the volume of the steady state heap is

v expanded somewhat so that the total volume of the layer is
S — NaZ[1+ a(Q,A)], where a(Q,A) is an expansion coeffi-

cient which is in general depending on the vibration fre-
FIG. 1. Schematic pictures of a granular layer in a vibrating bedquency and amplitude. Since we are interested in the heaping
(a) Initial flat layer of sizeL XH. (b) Downward heap(c) Upward  phenomenon in which the vibrational acceleration is small,
heap. a<1. This has also been observed from experim¢a€g
and from our simulation modéR1], that« is of the order of
energy dissipation, we introduce a simple mean field mode{y-2 1o 10-3. Hence we shall impose the boundary condi-

which can reproduce many of the observed phenomena sugfyn, that the total volume of the layer is conserved:
as heap formation and downward and upward modes. Our

model is aimed at predicting the structures and dynamics of l )
formation of steady state heaps in term of a surface profile of Jllhs(x)dx: Na“. ©)
the heap.
This boundary condition can also be rationalized from the
Il. HEAP EQUATION following point of view: imagine that after reaching the
steady state, the profile of the layer is measured after the
xternal vibration is turned off suddenly, the granular layer is
en frozen, the interstitial gases then escape from the layer.
this situation, the above boundary condition would hold.
The dynamics for the simple linear case whgs 0 can
e solved exactly. In this case, Ed.) becomes the linear
iffusion type equation

Our model is based on two important observations in vi-
brating bed experiments. The first is that energy is pumpe
into the medium by vibration, which causes density fluctua;
tions and causes the layer to expand. Second, the grains roﬂ
down the slope by surface flow and cause the profile to flat
ten. We shall consider a quasi-two-dimensional vibrating becg
for simplicity, as it can be easily extended to three dimen-
sions. The simplest phenomenological model one can con- gth=Da?h+Qh. (4)
struct is by using the profile of the layer as a dynamical
variable. Leth(x,t) denotes the height of the sandpile at Then with the symmetric and conserved volume boundary
position x and timet, the equation of motion oh(x,t) is  conditions similar to Eqs(2) and (3), the solution for an

proposed to be initially flat profile h(x,0)=H=Na?/(2l) is solved to be
oh _ 3%h m
EZDWJFQh—BhZ, 1) HKI » (—1)mcos|—ﬂx
h(x,t) coskx+ 2kl sinkl 2,

T ankl TN 12
whereD is a diffusion constant which approximates the sur- sinkl m=1 (ma/l)=k

face relaxation of fluctuations ih, and Qh is the effect of

increase in height due to vibrations per unit time. Equation

(1) models the situation when the layer becomes unstable x @~ [(mm/)?~Kk?| Dt (5)

and tends to expand for sufficient vibration accelerations ’

(I'>1). It is obvious that the- Bh? term is the decrease in

height per unit time, which can be interpreted as the rate ovherek= \/D. The dynamics for the non-line@+ 0 case
dissipation of energy in the system. The two ter@$ can be solved numerically and the relation with other prob-
— Bh? can then be regarded as the first two terms of théems of the dynamics of interfaces will be presented else-
Taylor expansion of some nonlinear interaction. TReerm  Where[22].

signifies nonlinear couplings of different modes in the sys-

tem. Presumably higher-order terms will enter for suffi- lll. STRUCTURES OF STEADY HEAPS

ciently strong nonlinear effects. However, for simplicity, we
will stick to Eq. (1). The system of interest consists Mf
grains, each of size, in a quasi-two-dimensional container
of width 2|. The midpoint of the bottom of the container is
taken to be the origiisee Fig. 1. We shall assume thét is
sufficiently large that the bottom of the container is always
covered with grains. The major interest in this paper will be A. Linear model

focused on the steady state profile of the granular layer. We For the linear case, the steady state profile obeys
shall assume that the initial profile is symmetiig,— x,0)

=h(x,0), for convenience. Since the conditions of the left d?hg
and right walls are assumed to be identical and will not dx?
change with time, the steady state profile must be symmetric.

The steady state profile will be denoted y(x). Therefore, 1/ represents the characteristic length scale of the heap.
one of the boundary condition fdr is Some general structural properties can be obtained from

In this paper, we shall focus on the structure of steady
heaps produced from Eql). With ¢h/gt=0, Eqg. (1) be-
comes an ordinary differential equation with boundary con-
ditions (2) and(3).

+k2hs=0. (6)
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boundary condition(3) before solving Eq.(6). Integrating B'h3[coskx cosxkx 1

Eq. (6) and using Eq(3), one obtains h¢(x) =hgcoskx— 2 3 + 5 2
h(l)=hg(—1)—Nk*a?, 7 B'?h3[29 coskx cosXx cos Xx

K| T 144 9 a8

Thus in the linear regime, it is impossible to have a upward

heap(valley) since such a heap hdg(l1)>0 andh(—1) 5kxsinkx 1 '3
<0, which violates the above relation. Equati@his solved t 5 3|tOBY), (15
easily with boundary condition&®) and (3), to give
ka2 andhg is given by
h(x)= =———coskx. (8)
2 sinkl kNS Natpkh) NS
One of the experimentally measurable quantities that charac- 2 sin(kl) = 4 sirf(kl) 8k sin®(kl)
terizes the heap is the heaping angle 202(kl)  89sinkl)  sin(2kl)
Oy=tan (h'(—1)). 9) sin(kl) 144 18
Our model in the linear regime gives _swﬁ:l) + Skl clozs(kl) +g B'2+0(B'%) (16)
1
ta”@HZENkzaz- (10 where 5(x)=(sinx/3)+[sin(2)/12] —x/2. One can see di-

rectly the systematic emergence of smaller wavelength

Obviously, the result from the linear model would make Modes for higher orders ia". In other words, a steady heap
sense only in the smak regime. In fact Eq(8) implies that of fmer spatlal structure appears at stronger nonlinearity. The
h is positive for allx only for 0<k</(2l). As the vibra- nonlmegr interaction causes different modes to couple, and
tion becomes stronger, nonlinear effects must be important€Sults in some steady spatial pattern. _

One expects nonlinearity to become more important as the
vibration becomes stronger, i.8, should increase witlk.

B. Nonlinear model Furthermore, the only length scale that depends on the

In the steady case, the heaping equatibnbecomes strength of vibration in the system isklthe length scale of
&h other smaller structures are fractions_ qk,lbs suggested

° 1 k2h— B'h2=0 (11) from the pertubative solution. Hence it is reasonable to as-

dx? S s sume the only frequency dependent length scale in the sys-

tem is 1k. From dimensional analysi®’ must be of the
wherep’= g/D. Equation(11), together with boundary con- form uk3, whereu is a dimensionless parameter controlling
ditions (2) and(3) can be solved in closed form in terms of the strength of the leading nonlinear effect. The steady state
generalized elliptic functiongsee the Appendix for detajls profiles are shown in Fig.(8) for various values ok. In

to give addition, the pertubation results b{x) are also shown in
Fig. 2(b) for comparison.
he(X) =hg+ (hg—u,)tn?{xyB’ (hg—u_)/6|lm)}, (12) Starting with a flat layer oN grains in a system of width

21, the steady state behavior of the system is monitored for
wherem=(u, —u_)/(hpy—u_), tn is the tangent Jacobian various values of vibration strength As shown in Fig. 2,
elliptic function [23], hy=h4(0), 2u.=(3k?%2B8')—h, the steady state heap changes from downwarduntain
+J[(3k?/2B") —hy)[(3k?/2B") +3hy]. The value ofhy is  modes to upward modes kincreases. A characteristic mea-
determined from Eq(3), and can be solved from sure of heaping is the ratio(0)/H, whereH is the height of
the originally flat grains. Hench(0)/H>1 and<1 corre-
spond to the downward and upward heaps, respectively. Fig-
ure 3 shows the variation @f(0)/H as a function ok for a
(13)  given value ofu, the change in the morphology of the steady
heap from the downward to the upward modes is cledt as
wherev=1B’(ho—u_)/6. The heaping angle is given by increases. The transition from downward to upward heap has
also been observed in recent experim¢hfg asl” increases.

120
2hl — W[E(amu|m)—oln(u|m)tn(u|m)]= Na?,

tan® = (u, —ho) V28’ (hg—u_)/3dn(v|m) Our recent ceIIuIar_automatq model based on th_e _sandpile
model plus empty site dynamics, also revealed a similar phe-
X tn(v|m)/(cn(v]|m))>? (14 nomenon as the vibration strength is increased.

Before we present the exact solutione{x), much in-
sight can be obtained using a perturbative approach by con-
sidering the case of small nonlinearity. For small, Eq. To investigate the system size effects on the steady heaps,
(11) can be solved perturbatively to give it is convenient to introduce some scaled variables,

C. Effect of absolute system size: scaled heaping profiles
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FIG. 2. Profile of steady heaps for a system with 1800 and
L/a=60 for various values of vibration strengkh(a) h(x) calcu-
lated from Eq.(12) with ©=0.5. (b) h(x) calculated exactly from
Eq.(12) and by pertubation using E¢(L5), with ©=0.2. handk are
in units ofa and 14, respectively.

h=h/H, (17)

x=x/l,

and define the aspect ratjp of the original flat layer agy
=H/(2l). Then the steady state heap equation becomes

1.5 T T T

h(0)/H

0.0
0.00

0.05 0.10 0.15 0.20
k

FIG. 3. h(0)/H vs k with different values ofu. N=1800 and
L/a=60. k is in unit of 1/4.
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FIG. 4. (a) Scaled steady heap profilegx) with xx=0.5 for
various values of scaled vibration strendth (b) Scaled heaping
angle tar® /(2x) vs kl for various values ofcy.

he(0)+ (kD Zhg(x) —2ux(kD*hZ(x)=0. (18

and the boundary conditions beconfghy(x)dx=1 and

hZ(0)=0. Thus the scaled profiles(x) depends only on the
values ofkl and wy. Figure 4a) displays the scaled profiles
for different values okl with a fixed value ofuxy=0.5. It
can be easily seen from E@L8) that a downward steady
heap will change to an upward heap when the vibration
strength is increased to the threshold value given by

kel =102 ).

The degree of heaping can best be quantified by the heaping
angle, and is given in terms of the scaled variable, as

(19

tan®y=2yh.(—1). (20)
Figure 4b) showsh/(—1) as a function okl for different
values ofuy, including thexxy=0 (the linear model case.
A nonvanishingu (i.e., nonlinear suppression of heiglis
essential to avoid the unphysical behavior of indefinite grow-
ing of the heaping angle at large vibrations. At first sight, it
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I FIG. 6. Experimental data of heaping angf@g of the steady
0 . . . profile vsI'—1 for a system of glass beads with a diameger
-50 =25 0 25 50 =1.28 mm;H/a=54.7 andL/a=86. The curve is the fitting from
X our analytical prediction Eq14)] usingu=0.78.

FIG. 5. Profile of heap from theory and experimehtandx are . i
in units of mm. (8) Downward heaping profile. Data are from the 1 = 1.5, together with the calculated profile from our equa-

experiment in Ref[20]; T' = 1.5 (glass beads of diametar=3 mm,  tion. It can be seen that the theoretical prediction agrees well
H=30 mm and_ =190 mm. (b) Upward heaping profile. Data are With the experimental profile. Also the steady upward heap
from the experiment in Ref12]; T =5.9 (glass beads of diameters Profile in Ref.[12] is also fitted reasonably well with our
a=0.61 mm,H=37 mm andL =100 mm). calculated profildFig. 5b)]. Larger deviations near the two
walls are probably due to corrections from higher order non-
appears that a system with a larger absolute size is easier #ipear effects, i.e., at such large vibrations, the sytems may
excite(can form a heap of the san@®, with a smaller value tend to produce more pairs of rplls and hence the slope near
of k) than a smaller system of the same aspect ratio. Howthe walls are smaller than predicted by the theory.
ever such a naive analysis is complicated by the factghiat The heaping angles of steady heap profiles were also mea-
actually size dependent. Singe represents the degree of sured as a function df in recent vibrating bed experiments
suppression of the growth of the layer due to dissipation 20]. These measured angles are compared with our calcu-
without taking into account the constant area boundary con@ted values obtained from E@L4). In order to identify the
dition, from a simple consideration one expects that, forexperimental values of =Aw?g with the vibrational
small «, the average height would be very large due to theStrength in our model, we consider the following scaling
small dissipation and height suppression, while the averag@nalysis. Supposing the bed vibrates vertically =s
height would be very small for very large. Thus it is rea- —ASinet, and that the granular layer is excited whEn
sonable to assume thatis a decreasing function ¢f. This =1, and assuming that in the steady excited state there is
assumption will be verified in Sec. IV, when the valueguof Maximum adsorption of energy in the layer a constant
are obtained from fitting with experimental data. Hence forfraction of the maximum energy adsorbethen one can
two systems of different absolute sizes but with the samé&asily calculate that the work done by the bed in one period
aspect ratioy, a larger system would have a smaljerand 1S *A%w°. This latter would be the input power to the layer
could be excited to a steeper heap for the same degree Bt the heap equation, and thusQ. Thus one has\?w®
vibration strengttk [see Fig. 4b)]. Thus the conclusion that Scales agdepends linearly on(), sincek’<Q and k=0
a larger system is easier to excite is still true, and this als§orrespond td’=1 (no expansioh One finally arrives at the
agrees with experimental observatidig,20]. identification

4/3
IV. COMPARISON WITH EXPERIMENTS =Tk 21)

One of the remarkable predictions of such a simple modeFigure 6 displays the measured data together with our theo-
is that both downward(mountain and upward (valley) retical results with the above identification. The theoretical
modes of steady heaping can be obtainekliass/aried. Such curve is obtained by fitting the paramejerand the propor-

a change in the morphology of the steady heap profiles as tH®nal constant in Eq(21). It should be noted that the peak
vibration strength is increased was also observed in experisalue of the curve depends only on the fitted valug.ofTo
ment[12], and also in our recent simulation of a simple void investigate further the effect of the absolute size of the layer
model[21]. Using Eq.(11), one can also solve for steady on the degree of heaping, we further analyze the experimen-
state heaping profiles to compare with real experiments. Figtal data on heaping angle for systems of different initial bed
ure 5a) shows the steady downward heap profile obtainecheightsH but with the same.. Figure 7 shows®, as a
from a quasi-two-dimensional heaping experimgti] with  function of I' —1, together with the fitting curves of the the-
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weak vibration. In the early stage of one sided heap forma-
tion, the process can probably still be described by our heap-
ing equation until the small fluctuations are amplified by the
nonlinear interaction to givh(x,t)=0. In a steady state one

sided heap, there is an extended range sfich thath=0.

, Presumably, some symmetry breaking processes due to ran-
"9 | 1 dom fluctuations must set in, and are amplified by some un-
\ 1 stable mechanism. In such a case, the size of the heap is not
J \° 7 determined by the system size but rather the number of
' 1 grains. Since the steady state profile close to the threshold of
instability will be always symmetric and almost flat, our
model would give an accurate prediction fofx,t) not very

far from a flat profile, In this sense, one can also extend our
s V] equation in anad hoc manner to include the case with

2 Y | <1 by

0.0 0.2 0.4 0.6 0.8 1.0
-1

FIG. 7. Experimental data of heaping angl@g of the steady
profile vsI'—1 for a system of glass beads with a diameter3
mm with fixedL/a=36.7 and different values dfi/a. The curves
are the fittings from our analytical predictif&q. (14)].

dhlgt=Dd?’hl ’x+ 0 (Q—Q)f(h), (22)

where® (Q1—Q.) is the Heaviside function which will not
be zero only wherf)> Q.. Thus one can identif§), asT’
andf(h)=(Q—Q/h—Bh2?+ ... The success of our model
for symmetric heaps is due to its ability to capture the two
main effects in the system, namely, the input and the dissi-

oretical results. It is clear from the data that a thick layer ispatlon of energy. Energy is putinto the system by the in-

easier to excite to a steeper heap. For layers Wit crease in height of the system, while dissipatiqn is repre-
—133. 20 and 23.3. the fitted valueé fare 1.48. 0.904 sented by the- Bh? term that removes the potential energy.
and .01763, respect.iv,ely Thus we veri/f'g/ the éSSlZIm.ptiOI’,l o he heaping inst_abilit_y occurs when the energy injected into
Sec Iil thét is a decréasing function dfl. Furthermore he system _by V|brat|(_)n_cannot be dissipated faSt enough.
for these Iay%rs with Eq19) one can comp;ute the theorét— Bulk .flow will occur S|m_|larly to thermal convectlon. Our_
ical threshold \;alue ok. above which the heap become heaping equation describes how the flow interacts nonlin-

i coEoT P early with the external vibration through the mean field de-
upward_(a valley; we obtaln_kc—0.935, 1.014, and 1.031, scription ofh(x,t). Steady states with heap formation can be
respectively for the layers withl/a=13.3, 20, and 2.3‘3' _In eached when the system balances these two effects. It
other words, we deduce that the _threshold vibrationa hould be noted that the boundary also plays a crucial role by
strength for the morphology change increases Hittifor

L . . confining the grains in a finite region, and leads to convec-
systems with fixed.), which was also observed in another tion Ing our ?‘nodel one can gcljefine an effective one-
experimen{12]. : )

dimensional currenf22] from Eq. (1), and the vanishing of
this effective current at the hard walls leads to the boundary
condition(3). It can also be seen from our model that vibra-
tion is treated as a mean field, with its effect averaged over
In this paper, a simple continuum model is introduced forone vibration cycle. Its mere effect is to produce input en-
the formation of granular heaps in vertically vibrating beds.ergy by increasing the height. In response to these increases,
Despite the simplicity of the model, it successfully accountsthe profile dynamics interact to relax the fluctuations and
for the structure of both downward and upward modes ofalso suppress the increase in height by dissipation. There-
heaps, and it also compares well with experimental data ofore, our model is more or less a pure relaxation model.
heap profiles and heaping angles. Our model is simpl&here is no direct interaction of the granular flow with the
enough that it allows for an analytical solution for the steadyvibration, and the heap formation is just a steady state which
state profile. Such an analytical result is important, and caimappens to be a stable state to dissipate the input energy.
provide valuable insight into the system which is otherwise It is obvious that our model will fail if the dissipation is
almost impossible since numerical simulations usually haveéiot strong enough to produce a compact sandpile. In real
to be employed for such complex nonlinear systems. liexperiments, whed'>1, the heap will disappear and the
should be remarked that our continuum approach does nalystem becomes gaslike, which means that the dissipation
account for the descrete nature of the granular particles, angte of the granular material is not fast enough. In this case,
we anticipate that our results would describe experimentghe system is characterized by how the granular flow inter-
more accurately for finer grains. acts with the external drive rather than how the energy is
It must be pointed out that our model works only for dissipated. Such situations occur in the oscillon and wave
symmetric heaps, but does not describe the formation of thpatterns in experiments of a thin layer under vibrati@h
one sided heap discussed in Sec. I. One of the main differwhere direct interaction of the granular flow with the vibrat-
ences in the formation of the symmetric and one sided heajng bed is strong. Although our model presented here is for a
is the number of grains in the system. In order to form a onawo-dimensional heap, its heap equation can be trivially ex-
sided heap, the number of grains must be small so thakended to three dimensions, and the associated pattern forma-
h(x,t) can become zero quite easily even during relativelytion problem is very rich.

V. CONCLUSION
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APPENDIX

o ) The integral can be evaluated using the result
Let ho=h4(0), thefirst integral of Eq.(11) gives

dz 1
dhe\? 28" . . ., f =z+ [E(amz|m) —dn(zlm)tn(z|m)],
b e S N _ cré(zjm) m—1
( dX) 3 (hs hO) K (hs hO)- (Al) (A?)
where the boundary condition,(0)=0 is used. A second where ama=sin Y(sre) is the amplitude of the Jacobian el-
integration then gives liptic function, andE is the elliptic integral of the second
kind. Upon integrating, EqLA6) becomes
3 [hg du
X==* —f 5 12
28" o \[(u—hg)[u2+ (hg—Q)u-+ (hg— Q)] Na“=2hgl — E[E(amﬂm)—dn(vlm)tn(vlm)],
(A2) (A8)
whereQ=3k?/(2/8'). wherev=I{B'(hy—u_)/6. hy is solved numerically and
Case | If Q>h,, the above integral can be evaluated inchecked for the consistency conditi@ h.
terms of Legendre elliptic integral of the first kind, Case It If Q<hy, then the integral in EA2) cannot be

expressed in terms of a well-studied function, and the im-
] 6 proper integral is evaluated numerically. However, in this
x= B’ (ho— u_)F(¢|m) ’ (A3) paper, we consider onl§’ = uk® and thusQ = 3/(2uk). Our
model is aimed at describing steady heaps that are formed
where sing=\/(hs—hg)/(hs—u,) and m=(u, —u_)/(h,  when vibrations are not strong, i.e., small value&.cFhere-
—u_). F can be inverted in terms of the Jacobian elliptic fore, in almost all casef>h, and the steady state profile is
function sn to give given by Eq.(A5).
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