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Symmetric heaping in grains: A phenomenological model

Pik-Yin Lai,1,2,* L. C. Jia,1 and C. K. Chan2
1Department of Physics and Center for Complex Systems, National Central University, Chung-Li, Taiwan 320, Republic of C

2Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan 115, Republic of China
~Received 29 September 1999!

Heap formation of granular materials in a vertical vibrating bed is studied by a simple model using the
profile of the heap as the dynamic variable. Vibration increases the local height, but is counterbalanced by the
nonlinear coupling, which tends to suppress the growth of the height. The steady state heap can be solved in
closed form in terms of Jacobian elliptic functions. Phenomena such as heap formation and downward and
upward heaps can be reproduced. Our results agree with the experimentally observed change of downward to
upward steady heaps as the vibration strength is increased. Predictions from the model compare favorably with
experimental results on heap profiles and heaping angles.

PACS number~s!: 83.70.Fn, 47.54.1r, 83.10.Hh, 45.05.1x
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I. INTRODUCTION

Granular materials has been the subject of great scien
and engineering interest for many years@1#. These granular
materials have the unique mechanical properties that
cannot be easily classified as either solid or liquid since t
can sustain shear like a solid as well as flowing like a liq
when driven. However, as distinct from liquids, granu
heaps~sandpiles! are stable as long as the top surface is a
slope less than the angle of repose. When the slope is
creased slightly above the maximum angle of stability, gra
begin to flow and an avalanche of particles occurs. Beca
of this unique characteristic, granular materials exhibit ma
unusual behavior in a vertical vibrating bed such as size s
regation@2–4#, density waves@5#, convective transport@6#,
and spectacular pattern formations@7,8#.

One of the most remarkable phenomena in granular
terials is the heap formation of grains in a vertically shak
container@9–11#. The relevant dimensionless parameter
this problem is the reduced acceleration amplitudeG
5Av2/g of the bed, whereg, A, andv are the gravitationa
acceleration, amplitude, and angular frequency of the vib
ing bed, respectively. An originally flat layer of sand w
become unstable and turn into a heap with a well-defi
structure ifG is greater than some threshold valueGc . Heap
formation is most spectacular when the number of grain
relatively small. In such a case, an asysmetric heap will
formed with most of the grains gathered in only one part
the container breaking the symmetry of the original syste
The grains in the heap are not simply moving up and do
vertically, but a convection roll with grains moving up alon
the wall and flows down the slope of the heap is also p
duced. On the other hand, when the number of grains is la
enough, it has been shown experimentally@12# that two
types of symmetric heaps can be formed, namely, the upw
~valley! and downward~mountain! modes. The main differ-
ence between these two modes is that the convection cu
of the granular particles next to the wall move up in t

*Author to whom correspondence should be addressed. Electr
address: pylai@spl1.phy.ncu.edu.tw
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upward mode, and vice versa. It is observed that asG in-
creases, the downward mode is formed first and followed
the upward mode. So far there is no theoretical explana
for the upward heap, nor a fundamental understanding of
role played by boundaries~walls! in this case.

Friction between the grains and with the wall, drivin
mechanism, and boundary effects@6,13# all play important
roles in the heap formation. There are many investigati
both in theory@2,14–16# and experiment@10,12,17# as well
as numerical simulation@18,19# to investigate the underlying
mechanism of heap formation in a vertically vibrating gran
lar layer. One of the main issues is to understand the na
of the instability at the threshold of heap formation where
vibration strength is still relatively low, and to relate th
observed phenomena to some vital dynamic granular pro
ties yet to be identified. One plausible candidate is the d
sity fluctuations induced by vibration in the presence of
terstitial gases. It is found that interstitial gas is vital for t
heap formation. Paket al. established in their experiment
@17# that heaping and convection current are strongly s
pressed when there is no interstitial gas. Therefore, den
fluctuations induced by vibration seem to be essential
heap formation, and any successful heaping model sho
also include this effect. Since the overall decrease in
density and density fluctuations of grains under vertical
brations can be viewed as the creation of voids in the gra
lar materials, there have been some models to include v
dynamics@14,16#, but they do not necessarily lead to th
formation of heaps. Furthermore, these models of voids
quite complicated cellular automata models, and there is
analytical result at all. On the other hand, the sidewalls
also essential, since they confine the grains to flow in a fin
region and the frictional properties of the wall can affect t
convection mode.

In this paper, we take another theoretical approach in
veloping a phenomenological model for the formation
heaps based on the ideas of void models. The key point is
observation that the presence of void in a granular med
would modify and/or increase the effective height of t
heaping profile. By using the height profile as the only d
namical variable, and taking into account the decrease
local density due to vibration and the nonlinear couplings
ic
5593 ©2000 The American Physical Society
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energy dissipation, we introduce a simple mean field mo
which can reproduce many of the observed phenomena
as heap formation and downward and upward modes.
model is aimed at predicting the structures and dynamic
formation of steady state heaps in term of a surface profil
the heap.

II. HEAP EQUATION

Our model is based on two important observations in
brating bed experiments. The first is that energy is pum
into the medium by vibration, which causes density fluctu
tions and causes the layer to expand. Second, the grains
down the slope by surface flow and cause the profile to fl
ten. We shall consider a quasi-two-dimensional vibrating b
for simplicity, as it can be easily extended to three dime
sions. The simplest phenomenological model one can c
struct is by using the profile of the layer as a dynami
variable. Leth(x,t) denotes the height of the sandpile
position x and time t, the equation of motion ofh(x,t) is
proposed to be

]h

]t
5D

]2h

]x2 1Vh2bh2, ~1!

whereD is a diffusion constant which approximates the s
face relaxation of fluctuations inh, andVh is the effect of
increase in height due to vibrations per unit time. Equat
~1! models the situation when the layer becomes unsta
and tends to expand for sufficient vibration acceleratio
(G.1). It is obvious that the2bh2 term is the decrease i
height per unit time, which can be interpreted as the rate
dissipation of energy in the system. The two termsVh
2bh2 can then be regarded as the first two terms of
Taylor expansion of some nonlinear interaction. Theh2 term
signifies nonlinear couplings of different modes in the s
tem. Presumably higher-order terms will enter for su
ciently strong nonlinear effects. However, for simplicity, w
will stick to Eq. ~1!. The system of interest consists ofN
grains, each of sizea, in a quasi-two-dimensional containe
of width 2l . The midpoint of the bottom of the container
taken to be the origin~see Fig. 1!. We shall assume thatN is
sufficiently large that the bottom of the container is alwa
covered with grains. The major interest in this paper will
focused on the steady state profile of the granular layer.
shall assume that the initial profile is symmetric,h(2x,0)
5h(x,0), for convenience. Since the conditions of the l
and right walls are assumed to be identical and will n
change with time, the steady state profile must be symme
The steady state profile will be denoted byhs(x). Therefore,
one of the boundary condition forhs is

FIG. 1. Schematic pictures of a granular layer in a vibrating b
~a! Initial flat layer of sizeL3H. ~b! Downward heap.~c! Upward
heap.
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hs~2x!5hs~x!. ~2!

The other boundary condition for this problem is based
the observation that the volume of the steady state hea
expanded somewhat so that the total volume of the laye
Na2@11a(V,A)#, where a(V,A) is an expansion coeffi-
cient which is in general depending on the vibration fr
quency and amplitude. Since we are interested in the hea
phenomenon in which the vibrational acceleration is sm
a!1. This has also been observed from experiments@20#
and from our simulation model@21#, thata is of the order of
1022 to 1023. Hence we shall impose the boundary con
tion that the total volume of the layer is conserved:

E
2 l

l

hs~x!dx5Na2. ~3!

This boundary condition can also be rationalized from
following point of view: imagine that after reaching th
steady state, the profile of the layer is measured after
external vibration is turned off suddenly, the granular laye
then frozen, the interstitial gases then escape from the la
In this situation, the above boundary condition would hol

The dynamics for the simple linear case whenb50 can
be solved exactly. In this case, Eq.~1! becomes the linea
diffusion type equation

] th5D]x
2h1Vh. ~4!

Then with the symmetric and conserved volume bound
conditions similar to Eqs.~2! and ~3!, the solution for an
initially flat profile h(x,0)5H5Na2/(2l ) is solved to be

h~x,t !5
Hkl

sinkl
S coskx12kl sinkl (

m51

` ~21!mcos
mp

l
x

~mp/ l !22k2

3e2[(mp/ l )22k2]DtD , ~5!

wherek[AV/D. The dynamics for the non-linearbÞ0 case
can be solved numerically and the relation with other pro
lems of the dynamics of interfaces will be presented el
where@22#.

III. STRUCTURES OF STEADY HEAPS

In this paper, we shall focus on the structure of stea
heaps produced from Eq.~1!. With ]h/]t50, Eq. ~1! be-
comes an ordinary differential equation with boundary co
ditions ~2! and ~3!.

A. Linear model

For the linear case, the steady state profile obeys

d2hs

dx2 1k2hs50. ~6!

1/k represents the characteristic length scale of the he
Some general structural properties can be obtained f

.
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boundary condition~3! before solving Eq.~6!. Integrating
Eq. ~6! and using Eq.~3!, one obtains

hs8~ l !5hs8~2 l !2Nk2a2. ~7!

Thus in the linear regime, it is impossible to have a upw
heap~valley! since such a heap hashs8( l ).0 and hs8(2 l )
,0, which violates the above relation. Equation~6! is solved
easily with boundary conditions~2! and ~3!, to give

h~x!5
Nka2

2 sinkl
coskx. ~8!

One of the experimentally measurable quantities that cha
terizes the heap is the heaping angle

QH5tan21
„h8~2 l !…. ~9!

Our model in the linear regime gives

tanQH5
1

2
Nk2a2. ~10!

Obviously, the result from the linear model would ma
sense only in the smallk regime. In fact Eq.~8! implies that
h is positive for allx only for 0<k,p/(2l ). As the vibra-
tion becomes stronger, nonlinear effects must be importa

B. Nonlinear model

In the steady case, the heaping equation~1! becomes

d2hs

dx2 1k2hs2b8hs
250 ~11!

whereb8[b/D. Equation~11!, together with boundary con
ditions ~2! and ~3! can be solved in closed form in terms
generalized elliptic functions~see the Appendix for details!
to give

hs~x!5h01~h02u1!tn2$xAb8~h02u2!/6um!%, ~12!

where m[(u12u2)/(h02u2), tn is the tangent Jacobia
elliptic function @23#, h0[hs(0), 2u6[(3k2/2b8)2h0

6A@(3k2/2b8)2h0)@(3k2/2b8)13h0#. The value ofh0 is
determined from Eq.~3!, and can be solved from

2h0l 2
12v
b8l

@E~amvum!2dn~vum!tn~vum!#5Na2,

~13!

wherev[ lAb8(h02u2)/6. The heaping angle is given by

tanQH5~u12h0!A2b8~h02u2!/3dn~vum!

3tn~vum!/„cn~vum!…2 ~14!

Before we present the exact solution ofhs(x), much in-
sight can be obtained using a perturbative approach by
sidering the case of small nonlinearity. For smallb8, Eq.
~11! can be solved perturbatively to give
d

c-

t.

n-

hs~x!5h0coskx2
b8h0

2

k2 Fcoskx

3
1

cos 2kx

6
2

1

2G
1

b82h0
3

k4 F29 coskx

144
1

cos 2kx

9
1

cos 3kx

48

1
5kx sinkx

12
2

1

3G1O~b83!, ~15!

andh0 is given by

h05
kNa2

2 sin~kl !
1

N2a4h~kl !

4 sin3~kl !
b81

N3a6

8k sin4~kl !

3S 2h2~kl !

sin~kl !
2

89 sin~kl !

144
2

sin~2kl !

18

2
sin~3kl !

144
1

5kl cos~kl !

12
1

kl

3 Db821O~b83! ~16!

where h(x)[(sinx/3)1@sin(2x)/12#2x/2. One can see di-
rectly the systematic emergence of smaller wavelen
modes for higher orders inb8. In other words, a steady hea
of finer spatial structure appears at stronger nonlinearity.
nonlinear interaction causes different modes to couple,
results in some steady spatial pattern.

One expects nonlinearity to become more important as
vibration becomes stronger, i.e.,b8 should increase withk.
Furthermore, the only length scale that depends on
strength of vibration in the system is 1/k, the length scale of
other smaller structures are fractions of 1/k, as suggested
from the pertubative solution. Hence it is reasonable to
sume the only frequency dependent length scale in the
tem is 1/k. From dimensional analysis,b8 must be of the
form mk3, wherem is a dimensionless parameter controllin
the strength of the leading nonlinear effect. The steady s
profiles are shown in Fig. 2~a! for various values ofk. In
addition, the pertubation results ofh(x) are also shown in
Fig. 2~b! for comparison.

Starting with a flat layer ofN grains in a system of width
2l , the steady state behavior of the system is monitored
various values of vibration strengthk. As shown in Fig. 2,
the steady state heap changes from downward~mountain!
modes to upward modes ask increases. A characteristic mea
sure of heaping is the ratioh(0)/H, whereH is the height of
the originally flat grains. Henceh(0)/H.1 and,1 corre-
spond to the downward and upward heaps, respectively.
ure 3 shows the variation ofh(0)/H as a function ofk for a
given value ofm, the change in the morphology of the stea
heap from the downward to the upward modes is clear ak
increases. The transition from downward to upward heap
also been observed in recent experiments@12# asG increases.
Our recent cellular automata model based on the sand
model plus empty site dynamics, also revealed a similar p
nomenon as the vibration strength is increased.

C. Effect of absolute system size: scaled heaping profiles

To investigate the system size effects on the steady he
it is convenient to introduce some scaled variables,
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x̃[x/ l , h̃[h/H, ~17!

and define the aspect ratiox of the original flat layer asx
[H/(2l ). Then the steady state heap equation becomes

FIG. 2. Profile of steady heaps for a system withN51800 and
L/a560 for various values of vibration strengthk. ~a! h(x) calcu-
lated from Eq.~12! with m50.5. ~b! h(x) calculated exactly from
Eq. ~12! and by pertubation using Eq.~15!, with m50.2. h andk are
in units of a and 1/a, respectively.

FIG. 3. h(0)/H vs k with different values ofm. N51800 and
L/a560. k is in unit of 1/a.
h̃s9~ x̃!1~kl !2h̃s~ x̃!22mx~kl !3h̃s
2~ x̃!50. ~18!

and the boundary conditions become*0
1h̃s( x̃)dx̃51 and

h̃s8(0)50. Thus the scaled profileh̃s( x̃) depends only on the
values ofkl andmx. Figure 4~a! displays the scaled profile
for different values ofkl with a fixed value ofmx50.5. It
can be easily seen from Eq.~18! that a downward steady
heap will change to an upward heap when the vibrat
strength is increased to the threshold value given by

kcl 51/~2mx!. ~19!

The degree of heaping can best be quantified by the hea
angle, and is given in terms of the scaled variable, as

tanQH52xh̃s8~21!. ~20!

Figure 4~b! showsh̃s8(21) as a function ofkl for different
values ofmx, including themx50 ~the linear model! case.
A nonvanishingm ~i.e., nonlinear suppression of height! is
essential to avoid the unphysical behavior of indefinite gro
ing of the heaping angle at large vibrations. At first sight

FIG. 4. ~a! Scaled steady heap profilesh̃( x̃) with mx50.5 for
various values of scaled vibration strengthkl. ~b! Scaled heaping
angle tanQH /(2x) vs kl for various values ofmx.
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appears that a system with a larger absolute size is easi
excite~can form a heap of the sameQH with a smaller value
of k) than a smaller system of the same aspect ratio. H
ever such a naive analysis is complicated by the fact thatm is
actually size dependent. Sincem represents the degree o
suppression of the growth of the layer due to dissipati
without taking into account the constant area boundary c
dition, from a simple consideration one expects that,
small m, the average height would be very large due to
small dissipation and height suppression, while the aver
height would be very small for very largem. Thus it is rea-
sonable to assume thatm is a decreasing function ofH. This
assumption will be verified in Sec. IV, when the values ofm
are obtained from fitting with experimental data. Hence
two systems of different absolute sizes but with the sa
aspect ratiox, a larger system would have a smallerm, and
could be excited to a steeper heap for the same degre
vibration strengthk @see Fig. 4~b!#. Thus the conclusion tha
a larger system is easier to excite is still true, and this a
agrees with experimental observations@12,20#.

IV. COMPARISON WITH EXPERIMENTS

One of the remarkable predictions of such a simple mo
is that both downward~mountain! and upward ~valley!
modes of steady heaping can be obtained ask is varied. Such
a change in the morphology of the steady heap profiles as
vibration strength is increased was also observed in exp
ment@12#, and also in our recent simulation of a simple vo
model @21#. Using Eq.~11!, one can also solve for stead
state heaping profiles to compare with real experiments.
ure 5~a! shows the steady downward heap profile obtain
from a quasi-two-dimensional heaping experiment@20# with

FIG. 5. Profile of heap from theory and experiments.h andx are
in units of mm.~a! Downward heaping profile. Data are from th
experiment in Ref.@20#; G51.5 ~glass beads of diametera53 mm,
H530 mm andL5190 mm!. ~b! Upward heaping profile. Data ar
from the experiment in Ref.@12#; G55.9 ~glass beads of diameter
a50.61 mm,H537 mm andL5100 mm!.
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G51.5, together with the calculated profile from our equ
tion. It can be seen that the theoretical prediction agrees
with the experimental profile. Also the steady upward he
profile in Ref. @12# is also fitted reasonably well with ou
calculated profile@Fig. 5~b!#. Larger deviations near the tw
walls are probably due to corrections from higher order n
linear effects, i.e., at such large vibrations, the sytems m
tend to produce more pairs of rolls and hence the slope n
the walls are smaller than predicted by the theory.

The heaping angles of steady heap profiles were also m
sured as a function ofG in recent vibrating bed experiment
@20#. These measured angles are compared with our ca
lated values obtained from Eq.~14!. In order to identify the
experimental values ofG[Av2/g with the vibrational
strength in our model, we consider the following scali
analysis. Supposing the bed vibrates vertically asx
5A sinvt, and that the granular layer is excited whenG
.1, and assuming that in the steady excited state ther
maximum adsorption of energy in the layer~or a constant
fraction of the maximum energy adsorbed!, then one can
easily calculate that the work done by the bed in one per
is }A2v3. This latter would be the input power to the lay
in the heap equation, and thus;V. Thus one hasA2v3

scales as~depends linearly on! V, since k2}V and k50
correspond toG51 ~no expansion!. One finally arrives at the
identification

G21}k4/3. ~21!

Figure 6 displays the measured data together with our th
retical results with the above identification. The theoreti
curve is obtained by fitting the parameterm and the propor-
tional constant in Eq.~21!. It should be noted that the pea
value of the curve depends only on the fitted value ofm. To
investigate further the effect of the absolute size of the la
on the degree of heaping, we further analyze the experim
tal data on heaping angle for systems of different initial b
heightsH but with the sameL. Figure 7 showsQH as a
function of G21, together with the fitting curves of the the

FIG. 6. Experimental data of heaping anglesQH of the steady
profile vs G21 for a system of glass beads with a diametera
51.28 mm;H/a.54.7 andL/a586. The curve is the fitting from
our analytical prediction Eq.~14!# usingm50.78.
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oretical results. It is clear from the data that a thick layer
easier to excite to a steeper heap. For layers withH/a
513.3, 20, and 23.3, the fitted values ofm are 1.48, 0.904,
and 0.763, respectively. Thus we verify the assumption
Sec. III thatm is a decreasing function ofH. Furthermore,
for these layers, with Eq.~19! one can compute the theore
ical threshold value ofkc above which the heap becom
upward ~a valley!; we obtainkc50.935, 1.014, and 1.031
respectively for the layers withH/a513.3, 20, and 23.3. In
other words, we deduce that the threshold vibratio
strength for the morphology change increases withH ~for
systems with fixedL), which was also observed in anoth
experiment@12#.

V. CONCLUSION

In this paper, a simple continuum model is introduced
the formation of granular heaps in vertically vibrating bed
Despite the simplicity of the model, it successfully accou
for the structure of both downward and upward modes
heaps, and it also compares well with experimental data
heap profiles and heaping angles. Our model is sim
enough that it allows for an analytical solution for the stea
state profile. Such an analytical result is important, and
provide valuable insight into the system which is otherw
almost impossible since numerical simulations usually h
to be employed for such complex nonlinear systems
should be remarked that our continuum approach does
account for the descrete nature of the granular particles,
we anticipate that our results would describe experime
more accurately for finer grains.

It must be pointed out that our model works only f
symmetric heaps, but does not describe the formation of
one sided heap discussed in Sec. I. One of the main di
ences in the formation of the symmetric and one sided h
is the number of grains in the system. In order to form a o
sided heap, the number of grains must be small so
h(x,t) can become zero quite easily even during relativ

FIG. 7. Experimental data of heaping anglesQH of the steady
profile vs G21 for a system of glass beads with a diametera53
mm with fixedL/a536.7 and different values ofH/a. The curves
are the fittings from our analytical prediction@Eq. ~14!#.
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weak vibration. In the early stage of one sided heap form
tion, the process can probably still be described by our he
ing equation until the small fluctuations are amplified by t
nonlinear interaction to giveh(x,t)50. In a steady state on
sided heap, there is an extended range ofx such thath50.
Presumably, some symmetry breaking processes due to
dom fluctuations must set in, and are amplified by some
stable mechanism. In such a case, the size of the heap i
determined by the system size but rather the number
grains. Since the steady state profile close to the thresho
instability will be always symmetric and almost flat, ou
model would give an accurate prediction forh(x,t) not very
far from a flat profile, In this sense, one can also extend
equation in anad hoc manner to include the case withG
,1 by

]h/]t5D]2h/]2x1Q~V2Vc! f ~h!, ~22!

whereQ(V2Vc) is the Heaviside function which will no
be zero only whenV.Vc . Thus one can identifyVc asGc
and f (h)5(V2Vc)h2bh21•••. The success of our mode
for symmetric heaps is due to its ability to capture the t
main effects in the system, namely, the input and the di
pation of energy. Energy is put into the system by the
crease in height of the system, while dissipation is rep
sented by the2bh2 term that removes the potential energ
The heaping instability occurs when the energy injected i
the system by vibration cannot be dissipated fast enou
Bulk flow will occur similarly to thermal convection. Ou
heaping equation describes how the flow interacts non
early with the external vibration through the mean field d
scription ofh(x,t). Steady states with heap formation can
reached when the system balances these two effect
should be noted that the boundary also plays a crucial role
confining the grains in a finite region, and leads to conv
tion. In our model, one can define an effective on
dimensional current@22# from Eq. ~1!, and the vanishing of
this effective current at the hard walls leads to the bound
condition~3!. It can also be seen from our model that vibr
tion is treated as a mean field, with its effect averaged o
one vibration cycle. Its mere effect is to produce input e
ergy by increasing the height. In response to these increa
the profile dynamics interact to relax the fluctuations a
also suppress the increase in height by dissipation. Th
fore, our model is more or less a pure relaxation mod
There is no direct interaction of the granular flow with th
vibration, and the heap formation is just a steady state wh
happens to be a stable state to dissipate the input energ

It is obvious that our model will fail if the dissipation i
not strong enough to produce a compact sandpile. In
experiments, whenG@1, the heap will disappear and th
system becomes gaslike, which means that the dissipa
rate of the granular material is not fast enough. In this ca
the system is characterized by how the granular flow in
acts with the external drive rather than how the energy
dissipated. Such situations occur in the oscillon and w
patterns in experiments of a thin layer under vibration@7#
where direct interaction of the granular flow with the vibra
ing bed is strong. Although our model presented here is fo
two-dimensional heap, its heap equation can be trivially
tended to three dimensions, and the associated pattern fo
tion problem is very rich.
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APPENDIX

Let h0[hs(0), thefirst integral of Eq.~11! gives

S dhs

dx D 2

5
2b8

3
~hs

32h0
3!2k2~hs

22h0!, ~A1!

where the boundary conditionhs8(0)50 is used. A second
integration then gives

x56A 3

2b8
E

h0

hs du

A~u2h0!@u21~h02Q!u1~h02Q!h0#
~A2!

whereQ[3k2/(2/b8).
Case I: If Q.h0, the above integral can be evaluated

terms of Legendre elliptic integral of the first kind,

x5A 6

b8(h02u2)
F~fum! , ~A3!

where sinf[A(hs2h0)/(hs2u1) and m[(u12u2)/(h0
2u2). F can be inverted in terms of the Jacobian ellip
function sn to give
od

et

.

ev

d

.

.

.

-

,

sinf5sn„Ab8~h02u2!/6xum…. ~A4!

Finally hs(x) can be solved to give

hs~x!5h01~h02u1!tn2
„xAb8~h02u2!/6um…. ~A5!

h0 is to be determined from the boundary condition~3!:

Na252h0l 12~h02u1!E
0

l

tn2
„Ab8~h02u2!/6xum…dx .

~A6!

The integral can be evaluated using the result

E dz

cn2~zum!
5z1

1

m21
@E~amzum!2dn~zum!tn~zum!#,

~A7!

where amz5sin21(snz) is the amplitude of the Jacobian e
liptic function, andE is the elliptic integral of the second
kind. Upon integrating, Eq.~A6! becomes

Na252h0l 2
12v
b8l

@E~amvum!2dn~vum!tn~vum!#,

~A8!

where v[ lAb8(h02u2)/6. h0 is solved numerically and
checked for the consistency conditionQ.h0.

Case II: If Q,h0, then the integral in Eq.~A2! cannot be
expressed in terms of a well-studied function, and the
proper integral is evaluated numerically. However, in th
paper, we consider onlyb85mk3 and thusQ53/(2mk). Our
model is aimed at describing steady heaps that are for
when vibrations are not strong, i.e., small values ofk. There-
fore, in almost all cases,Q.h0 and the steady state profile
given by Eq.~A5!.
o,

s.

ev.
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